GDTW-P-SVMs: Variable-length time series analysis using support vector machines
نویسندگان
چکیده
منابع مشابه
Predicting Time Series with Support Vector Machines
Support Vector Machines are used for time series prediction and compared to radial basis function networks. We make use of two diierent cost functions for Support Vectors: training with (i) an insensitive loss and (ii) Huber's robust loss function and discuss how t o c hoose the regularization parameters in these models. Two applications are considered: data from (a) a noisy (normal and uniform...
متن کاملPredicting Time Series with Support Vector Machines
Support Vector Machines are used for time series prediction and compared to radial basis function networks. We make use of two diierent cost functions for Support Vectors: training with (i) an insensitive loss and (ii) Huber's robust loss function and discuss how to choose the regularization parameters in these models. Two applications are considered: data from (a) a noisy (normal and uniform n...
متن کاملSTAGE-DISCHARGE MODELING USING SUPPORT VECTOR MACHINES
Establishment of rating curves are often required by the hydrologists for flow estimates in the streams, rivers etc. Measurement of discharge in a river is a time-consuming, expensive, and difficult process and the conventional approach of regression analysis of stage-discharge relation does not provide encouraging results especially during the floods. P
متن کاملNonlinear Prediction of Chaotic Time Series Using Support Vector Machines
A novel method for regression has been recently proposed by V Vapnik et al The technique called Support Vector Machine SVM is very well founded from the mathematical point of view and seems to provide a new insight in function approximation We implemented the SVM and tested it on the same data base of chaotic time series that was used in to compare the performances of di erent approximation tec...
متن کاملEvolutionary Support Vector Machines for Time Series Forecasting
Time Series Forecasting (TSF) uses past patterns of an event in order to predict its future values and is a key tool to support decision making. In the last decades, Computational Intelligence (CI) techniques, such as Artificial Neural Networks (ANN) and more recently Support Vector Machines (SVM), have been proposed for TSF. The accuracy of the best CI model is affected by both the selection o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neurocomputing
سال: 2013
ISSN: 0925-2312
DOI: 10.1016/j.neucom.2012.07.006